Proof
(related to Proposition: Antidifferences of Some Functions)
Ad $(1)$
Ad $(2)$
Ad $(3)$
- Similarly, summing both sides of the result $\Delta 2^x=2^x$ yields $$\sum 2^x=2^x.$$
Ad $(4)$
- We calculate the difference operator $\Delta\cos(ax+b)=-2\sin(a/2)\sin(ax+b+a/2).$
- Set $b=-a/2.$
- It follows $\cos(ax-a/2)=-2\sin(a/2)\sin(ax).$
- Thus, for $a\neq 2n\pi$: $$\sum\sin(ax)=-\frac{\cos(a(x-1/2))}{2\sin(a/2)}.$$
Ad $(5)$
- Similarly, from $\Delta\sin(ax+b)=-2\sin(a/2)\cos(ax+b+a/2),$ we deduce for $a\neq 2n\pi$: $$\sum\cos(ax)=\frac{\sin(a(x-1/2))}{2\sin(a/2)}.$$
Ad $(6)$
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Miller, Kenneth S.: "An Introduction to the Calculus of Finite Differences And Difference Equations", Dover Publications, Inc, 1960