Proposition: Number of Strings With a Fixed Length Over an Alphabet with k Letters

Let \(A\) be an alphabet with \(k\) letters \[A=\{l_1,\ldots,l_k\}.\] The number of different strings of length \(n\) over this alphabet (i.e. \(s_i\in A\)) \[s_1s_2\ldots s_n\] equals \[k^n.\]

Proofs: 1

Proofs: 1 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Aigner, Martin: "Diskrete Mathematik", vieweg studium, 1993