# Explanation: Pascal's Triangle (Triangle of Binomial Coefficients)

(related to Definition: Combinations)

The numbers formed by binomial coefficients $$\binom nk$$, where $$n$$ and $$k$$ are natural numbers form a scheme, named the Pascal's triangle1. The beginning of Pascal's triangle (for $$11\le n,k\le 0$$) is shown in the following table:

$\begin{array}{r|rrrrrrrrrrr} n&\binom n0&\binom n1&\binom n2&\binom n3&\binom n4&\binom n5&\binom n6&\binom n7&\binom n8&\binom n9&\binom n{10}&\binom n{11}\\ \hline 0&1\\ 1&1&1&\\ 2&1&2&1&\\ 3&1&3&3&1&\\ 4&1&4&6&4&1\\ 5&1&5&10&10&5&1\\ 6&1&6&15&20&15&6&1\\ 7&1&7&21&35&35&21&7&1\\ 8&1&8&28&56&70&56&28&8&1\\ 9&1&9&36&84&126&126&84&36&9&1\\ 10&1&10&45&120&210&252&210&120&45&10&1\\ 11&1&11&55&165&330&462&462&330&165&55&11&1\\ \end{array}$

Note that empty entries in this table are actually $$0$$'s. This is because the numerator in the closed formula for binomial coefficients is zero if $$n < k$$ $\binom nk=\frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots 2\cdot 1},$ e.g. $$\binom 23=(1\cdot 0\cdot (-1))/(3\cdot 2\cdot 1)=0$$. The $$0$$ entries have been left blank to help emphasize the rest of the table.

Explanations: 1

Chapters: 1 2
Explanations: 3
Parts: 4 5

Thank you to the contributors under CC BY-SA 4.0!

Github:

#### Footnotes

1. named after Blaise Pascal (1623-1662)