Proposition: Recursive Formula for Binomial Coefficients

The binomial coefficient \(\binom nk\) can be for \(k,n\in\mathbb N\), \(n\ge 1\), \(n\ge k\) calculated using the following recursive formula:

\[\binom nk=\binom {n-1}{k-1} + \binom {n-1}{k}.\]

We have the special cases

\(\binom n0=1\) for all \(n\in\mathbb N\) and

\(\binom nn=1\) for all \(n\in\mathbb N\).

Proofs: 1

Parts: 1 2
Proofs: 3 4 5


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Aigner, Martin: "Diskrete Mathematik", vieweg studium, 1993