Proposition: Recursive Formula for the Stirling Numbers of the Second Kind

The Stirling numbers of the second kind obey the following recursive formula $$\left\{\begin{array}{c}n+1\\r\end{array}\right\}=\left\{\begin{array}{c}n\\r-1\end{array}\right\}+r\cdot \left\{\begin{array}{c}n\\r\end{array}\right\}$$ with the initial conditions $$\begin{align}\left\{\begin{array}{c}n\\n\end{array}\right\}&:=1,\quad n\ge 1\nonumber\\\left\{\begin{array}{c}n\\r\end{array}\right\}&:=0,\quad r=0 < n\text{ or }n < r.\nonumber\end{align}$$

Proofs: 1

Chapters: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Miller, Kenneth S.: "An Introduction to the Calculus of Finite Differences And Difference Equations", Dover Publications, Inc, 1960