Proof
(related to Proposition: Simple Binomial Identities)
Ad \((1)\)
- From the closed formula for binomial coefficients and the definition of rational numbers it follows for \(k\ge 1\):
\[\begin{array}{rcll}
k\binom nk&=&\cancel {k}\cdot \frac{n(n-1)\cdot\ldots\cdot(n-k+1)}{\cancel {k}(k-1)\cdot\ldots \cdot 2\cdot 1}&\text{definition of binomial coefficients, cancellation of }k\\
&=&n\cdot \frac{(n-1)\cdot \ldots\cdot (n-k+1)}{(k-1)\cdot\ldots \cdot 2\cdot 1}&\text{extraction of a factor from the nominator}\\
&=&n\binom{n-1}{k-1}&\text{definition of binomial coefficients}.
\end{array}\]
Ad \((2)\)
\[\begin{array}{rcll}
k^2\binom nk&=&(k+k(k-1))\binom nk&\text{rewriting }k^2\\
&=&k\binom nk+k(k-1)\binom nk&\text{"distributivity law for rational numbers}\\
&=&k\binom nk+\cancel {k(k-1)}\cdot \frac{n(n-1)(n-2)\cdot\ldots\cdot(n-k+1)}{\cancel {k(k-1)}(k-2)\cdot\ldots \cdot 2\cdot 1}&\text{definition of binomial coefficients, cancellation of }k(k-1)\\
&=&k\binom nk+n(n-1)\cdot \frac{(n-2)\cdot \ldots\cdot (n-k+1)}{(k-2)\cdot\ldots \cdot 2\cdot 1}&\text{extraction of a factor from the nominator}\\
&=&k\binom nk+n(n-1)\binom{n-2}{k-2}&\text{definition of binomial coefficients}.
\end{array}\]
Ad $(3)$
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Bosch, Karl: "Elementare Einführung in die Wahrscheinlichkeitsrechnung", vieweg Studium, 1995, 6th Edition