Proof

(related to Proposition: Simple Binomial Identities)

Ad \((1)\)

Ad \((2)\)

\[\begin{array}{rcll} k^2\binom nk&=&(k+k(k-1))\binom nk&\text{rewriting }k^2\\ &=&k\binom nk+k(k-1)\binom nk&\text{"distributivity law for rational numbers}\\ &=&k\binom nk+\cancel {k(k-1)}\cdot \frac{n(n-1)(n-2)\cdot\ldots\cdot(n-k+1)}{\cancel {k(k-1)}(k-2)\cdot\ldots \cdot 2\cdot 1}&\text{definition of binomial coefficients, cancellation of }k(k-1)\\ &=&k\binom nk+n(n-1)\cdot \frac{(n-2)\cdot \ldots\cdot (n-k+1)}{(k-2)\cdot\ldots \cdot 2\cdot 1}&\text{extraction of a factor from the nominator}\\ &=&k\binom nk+n(n-1)\binom{n-2}{k-2}&\text{definition of binomial coefficients}. \end{array}\]

Ad $(3)$


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Bosch, Karl: "Elementare Einführung in die Wahrscheinlichkeitsrechnung", vieweg Studium, 1995, 6th Edition