Solution
(related to Problem: Sum of Consecutive Positive Integers)
$$1+2+3+\ldots+n=\sum_{x=1}^n x^{\underline{1}}=\frac{x(x-1)}{2}\;\Rule{1px}{4ex}{2ex}^{n+1}_{1}=\frac{(n+1)n}{2}.$$
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Miller, Kenneth S.: "An Introduction to the Calculus of Finite Differences And Difference Equations", Dover Publications, Inc, 1960