Solution
(related to Problem: Sum of Consecutive Squares)
- Note that we can write $x^2$ using the falling factorial powers as $x^2=x(x-1)+x=x^{\underline{2}}+x^{\underline{1}}.$
- Now, $$\begin{align}1^2+2^2+3^2+\ldots+n^2&=\sum_{x=1}^n (x^{\underline{2}}+x^{\underline{1}})\nonumber\\
&=\left(\frac{x^{\underline 3}}{3}+\frac{x^{\underline 2}}{2}\right)\;\Rule{1px}{4ex}{2ex}^{n+1}_{1}\nonumber\\
&=\left(\frac{x(x-1)(x-2)}{3}+\frac{x(x-1)}{2}\right)\;\Rule{1px}{4ex}{2ex}^{n+1}_{1}\nonumber\\
&=\frac{(n+1)n(n-1)}{3}+\frac{(n+1)n}{2}\nonumber\\
&=\frac{n(n+1)(2n+1)}{6}.\nonumber
\end{align}$$
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Miller, Kenneth S.: "An Introduction to the Calculus of Finite Differences And Difference Equations", Dover Publications, Inc, 1960