Proposition: 9.36: Theorem of Even Perfect Numbers (First Part)

Euclid's Formulation

If any multitude whatsoever of numbers is set out continuously in a double proportion, (starting) from a unit, until the whole sum added together becomes prime, and the sum multiplied into the last (number) makes some (number), then the (number so) created will be perfect.

fig36e

Historical Notes

Modern Formulation

See even perfect numbers.

Proofs: 1

Propositions: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs
non-Github:
@Fitzpatrick


References

Adapted from (subject to copyright, with kind permission)

  1. Fitzpatrick, Richard: Euclid's "Elements of Geometry"

Adapted from CC BY-SA 3.0 Sources:

  1. Prime.mover and others: "Pr∞fWiki", https://proofwiki.org/wiki/Main_Page, 2016