◀ ▲ ▶Branches / Graph-theory / Lemma: Handshaking Lemma for Finite Digraphs
Lemma: Handshaking Lemma for Finite Digraphs
In any finite digraph \(D=(V,E,\alpha,\omega)\), the sum of all outer degrees and the sum of all inner degrees are both equal to the number of edges:
\[\sum_{v\in V}d_D^+(v)=\sum_{v\in V}d_D^-(v)=|E|.\]
In particular, the sum of all degrees is even:
\[\sum_{v\in V}d_D(v)=2|E|.\]
Table of Contents
Proofs: 1 Corollaries: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Krumke S. O., Noltemeier H.: "Graphentheoretische Konzepte und Algorithmen", Teubner, 2005, 1st Edition