Lemma: Handshaking Lemma for Finite Digraphs

In any finite digraph \(D=(V,E,\alpha,\omega)\), the sum of all outer degrees and the sum of all inner degrees are both equal to the number of edges: \[\sum_{v\in V}d_D^+(v)=\sum_{v\in V}d_D^-(v)=|E|.\] In particular, the sum of all degrees is even: \[\sum_{v\in V}d_D(v)=2|E|.\]

Proofs: 1 Corollaries: 1

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Krumke S. O., Noltemeier H.: "Graphentheoretische Konzepte und Algorithmen", Teubner, 2005, 1st Edition