◀ ▲ ▶Branches / Logic / Definition: Derivability Property
Obviously, "$\vdash$" defines a relation on $L$. This relation is called the called the derivability property.
Definition: Derivability Property
Let \(L\) be a logical calculus. We say that a string $\phi\in L$ is derivable in $L$
if there is is proof $\phi_1,\ldots,\phi_n\vdash \phi$. In this case, we write $\vdash_L\phi$, or just $\vdash \phi$.
Otherwise, we write $\not\vdash\phi,$ denoting that $\phi$ has not derivable in $L$.
Mentioned in:
Chapters: 1 2
Definitions: 3
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Hoffmann, Dirk W.: "Grenzen der Mathematik - Eine Reise durch die Kerngebiete der mathematischen Logik", Spektrum Akademischer Verlag, 2011
- Beierle, C.; Kern-Isberner, G.: "Methoden wissensbasierter Systeme", Vieweg, 2000