◀ ▲ ▶Branches / Logic / Definition: Logical Arguments
Definition: Logical Arguments
A logical argument consists of some (say n\ge 1) given propositions p_1,\ldots,p_n, called premises, and a proposition q, called the conclusion.
There are two kinds of logical arguments, valid arguments, and fallacies:
- A logical argument is valid if and only if the conclusion is true whenever all the premises are simultaneously true, formally \text{ if }([[p_1]]_I=1\text{ and },\ldots,\text{ and }[[p_n]]_I=1),\text{ then } [[q]]_I=1 for all interpretations I.
- A fallacy is an invalid argument: The conclusion is false, while all the premises are true, formally ([[p_1]]_I=1\text{ and },\ldots, \text{ and }[[p_n]]_I=1), \text{ and }[[q]]_I=0 for all interpretations I.
Mentioned in:
Chapters: 1 2
Examples: 3
Explanations: 4 5
Lemmas: 6 7 8 9 10 11 12 13 14
Proofs: 15 16 17 18 19 20 21 22 23 24
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Kane, Jonathan: "Writing Proofs in Analysis", Springer, 2016
- Kohar, Richard: "Basic Discrete Mathematics, Logic, Set Theory & Probability", World Scientific, 2016