Definition: Absolute Value of Integers
Let \(x\in \mathbb Z\). Based on the order relation for integers, we can define the absolute value of \(x\) as a function \(|~|:\mathbb Z\mapsto \mathbb N\)
\[|x| :=
\begin{cases}
x & \text{ if } x\ge y \\
-x & \text{ if } x < y.
\end{cases}\]
Mentioned in:
Proofs: 1 2
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013