Definition: Absolute Value of Integers

Let \(x\in \mathbb Z\). Based on the order relation for integers, we can define the absolute value of \(x\) as a function \(|~|:\mathbb Z\mapsto \mathbb N\)

\[|x| := \begin{cases} x & \text{ if } x\ge y \\ -x & \text{ if } x < y. \end{cases}\]

Proofs: 1 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013