Proposition: Absolute Value of the Product of Complex Numbers

For all $z_1,z_2\in\mathbb C$, the absolute value of the product of complex numbers $|z_1z_2|$ equals the product of real numbers represented by the absolute values $|z_1|$ and $|z_2|$, formally $|z_1z_2|=|z_1||z_2|.$

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983