Proposition: Absolute Value of the Product of Complex Numbers
For all $z_1,z_2\in\mathbb C$, the absolute value of the product of complex numbers $|z_1z_2|$ equals the product of real numbers represented by the absolute values $|z_1|$ and $|z_2|$, formally $|z_1z_2|=|z_1||z_2|.$
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983