Proposition: Addition of Rational Cauchy Sequences Is Cancellative

The addition of rational Cauchy sequences is cancellative, i.e. for all rational Cauchy sequences \((x_n)_{n\in\mathbb N},(y_n)_{n\in\mathbb N},(z_n)_{n\in\mathbb N}\), the following laws (both) are fulfilled:

Conversely, the equation \((x_n)_{n\in\mathbb N}=(y_n)_{n\in\mathbb N}\) implies

for all rational Cauchy sequences \((x_n)_{n\in\mathbb N},(y_n)_{n\in\mathbb N},(z_n)_{n\in\mathbb N}\).

Proofs: 1

Proofs: 1 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013