Proposition: Addition of Rational Cauchy Sequences Is Commutative
The addition of rational Cauchy sequences is commutative, i.e. for any rational Cauchy sequences \((x_n)_{n\in\mathbb N}\) and \((y_n)_{n\in\mathbb N}\) the following law is valid:
\[(x_n)_{n\in\mathbb N}+(y_n)_{n\in\mathbb N}=(y_n)_{n\in\mathbb N}+(x_n)_{n\in\mathbb N}.\]
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1 2 3 4
Thank you to the contributors under CC BYSA 4.0!
 Github:

References
Bibliography
 Kramer Jürg, von Pippich, AnnaMaria: "Von den natürlichen Zahlen zu den Quaternionen", SpringerSpektrum, 2013