Proposition: Addition of Rational Cauchy Sequences Is Commutative
The addition of rational Cauchy sequences is commutative, i.e. for any rational Cauchy sequences \((x_n)_{n\in\mathbb N}\) and \((y_n)_{n\in\mathbb N}\) the following  law is valid:
\[(x_n)_{n\in\mathbb N}+(y_n)_{n\in\mathbb N}=(y_n)_{n\in\mathbb N}+(x_n)_{n\in\mathbb N}.\]
Table of Contents
Proofs: 1 
Mentioned in:
Proofs: 1 2 3 4 
Thank you to the contributors under CC BY-SA 4.0!  
  
- Github:
 -  

 
References
Bibliography
- Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013