Proposition: Calculating with Complex Conjugates
For any complex numbers \(z, z_1,z_2\in\mathbb C\) we have
\((1)\) \((z^*)^*=z\).
\((2)\) \((z_1+z_2)^*=z_1^*+z_2^*\).
\((3)\) \((z_1\cdot z_2)^*=z_1^*\cdot z_2^*\).
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983