Proposition: Contraposition of Cancellative Law for Adding Integers

If any two integers are unequal \(x\neq y\), then the inequality is preserved, if and only if we add an arbitrary integer \(z\) to both sides of the inequality, formally: \[x \neq y\Longleftrightarrow \begin{cases} z + x\neq z + y,&\text{or}\\ x + z\neq y + z. \end{cases}\]

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Landau, Edmund: "Grundlagen der Analysis", Heldermann Verlag, 2008