◀ ▲ ▶Branches / Number-systems-arithmetics / Proposition: Contraposition of Cancellative Law for Adding Real Numbers
Proposition: Contraposition of Cancellative Law for Adding Real Numbers
If any two real numbers are unequal \(x\neq y\), then the inequality is preserved, if and only if we add an arbitrary real number \(z\) to both sides of the inequality, formally: \[x \neq y\Longleftrightarrow \begin{cases} z + x\neq z + y,&\text{or}\\
x + z\neq y + z.
\end{cases}\]
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Landau, Edmund: "Grundlagen der Analysis", Heldermann Verlag, 2008