Proposition: Contraposition of Cancellative Law for Multiplying Integers

If any two integers \(x,y\) are unequal, then the inequality is preserved, if and only if we multiply both sides of the inequality by an arbitrary integer \(z\neq 0\):\[x \neq y\Longleftrightarrow \begin{cases} z \cdot x\neq z \cdot y,&\text{or}\\ x \cdot z\neq y \cdot z. \end{cases}\]

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Landau, Edmund: "Grundlagen der Analysis", Heldermann Verlag, 2008