◀ ▲ ▶Branches / Number-systems-arithmetics / Proposition: Contraposition of Cancellative Law of for Multiplying Real Numbers
Proposition: Contraposition of Cancellative Law of for Multiplying Real Numbers
If any two real numbers \(x,y\) are unequal, then the inequality is preserved, if we multiply both sides of the inequality by an arbitrary real number \(z\neq 0\):\[x \neq y\Longrightarrow \begin{cases} z \cdot x\neq z \cdot y\\
x \cdot z\neq y \cdot z.
\end{cases}\]
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Landau, Edmund: "Grundlagen der Analysis", Heldermann Verlag, 2008