Lemma: Convergent Rational Sequences With Limit \(0\) Are an Ideal Of the Ring of Rational Cauchy Sequences

Let \((M , + , \cdot)\) be the commutative unit ring of all rational Cauchy sequences. The set \(I:=\{(a_n)_{n\in\mathbb N}~|~a_n\in\mathbb Q,\lim a_n=0\}\) of all rational sequences convergent to \(0\) is an ideal of \(M\), formally \(I\lhd R\), which is equivalent to the following properties:

  1. \((I, +)\) is a subgroup of \((M , +)\).
  2. If we multiply a rational Cauchy sequence by a rational sequence convergent to \(0\) from the right, the product is convergent to \(0\), formally \[(c_n)_{n\in\mathbb N}\in M,~(a_n)_{n\in\mathbb N}\in I\Longrightarrow (c_n\cdot a_n)_{n\in\mathbb N}\in I.\]
  3. If we multiply a rational Cauchy sequence by a rational sequence convergent to \(0\) from the right, the product is convergent to \(0\), formally \[(c_n)_{n\in\mathbb N}\in M,~(a_n)_{n\in\mathbb N}\in I\Longrightarrow (c_n\cdot a_n)_{n\in\mathbb N}\in I.\]

Proofs: 1

Definitions: 1
Proofs: 2 3


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013