◀ ▲ ▶Branches / Number-systems-arithmetics / Lemma: Convergent Rational Sequences With Limit `\(0\)` Are Rational Cauchy Sequences
Lemma: Convergent Rational Sequences With Limit \(0\) Are Rational Cauchy Sequences
Let \((M , + , \cdot)\) be the unit ring of all rational Cauchy sequences. The set \(I:=\{(a_n)_{n\in\mathbb N}~|~a_n\in\mathbb Q,\lim a_n=0\}\) of all rational sequences convergent to \(0\) is a subset of \(M\), formally \(I\subseteq R\).
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013