(related to Proposition: Definition of Real Numbers)
Let (x_n)_{n\in\mathbb N}, (y_n)_{n\in\mathbb N} be rational Cauchy sequences. We will prove that the relation defined by
(x_n)_{n\in\mathbb N}\sim(y_n)_{n\in\mathbb N}\quad\Longleftrightarrow\quad \lim_{n\to\infty } y_n-x_n =0\in\mathbb Q
is an equivalence relation. In other words, the real numbers as equivalence classes x:=(x_n)_{n\in\mathbb N}+I:=\{(y_n)_{n\in\mathbb N},~ (y_n)_{n\in\mathbb N}\sim (x_n)_{n\in\mathbb N}\} are well-defined.
Clearly, \lim_{n\to\infty } x_n-x_n =0.
Since \lim_{n\to\infty } y_n-x_n =0\Leftrightarrow \lim_{n\to\infty } x_n-y_n =0.
By hypothesis, the rational Cauchy sequences (i_n)_{n\in\mathbb N}:=(y_n - x_n)_{n\in\mathbb N} and (j_n)_{n\in\mathbb N}:=(z_n - y_n)_{n\in\mathbb N} are convergent to 0. Because z_n-x_n=j_n+i_n and because \lim_{n\to\infty} j_n+i_n=0, it follows (x_n)_{n\in\mathbb N}\sim (z_n)_{n\in\mathbb N}.