Proposition: Double Summation
A series \(a_{ij}\in S\) of a given commutative
semigroup \(a_i,a_j\in(S, +)\), can be summed in two different ways, giving the same result.
\[\sum_{i=1}^n\sum_{j=1}^m a_{ij}=\sum_{j=1}^m\sum_{i=1}^n a_{ij}.\]
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983