Proposition: Double Summation
A series \(a_{ij}\in S\) of a given  commutative 
semigroup \(a_i,a_j\in(S, +)\), can be summed in two different ways, giving the same result.
\[\sum_{i=1}^n\sum_{j=1}^m a_{ij}=\sum_{j=1}^m\sum_{i=1}^n a_{ij}.\]
Table of Contents
Proofs: 1 
Thank you to the contributors under CC BY-SA 4.0!   
  
- Github:
-   
 
References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983