Proposition: Double Summation

A series \(a_{ij}\in S\) of a given commutative semigroup \(a_i,a_j\in(S, +)\), can be summed in two different ways, giving the same result.

\[\sum_{i=1}^n\sum_{j=1}^m a_{ij}=\sum_{j=1}^m\sum_{i=1}^n a_{ij}.\]

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983