Proposition: Equality of Two Ratios

Let \(a,b,c,d\) be real numbers with \(b\neq 0\) and \(d\neq 0\). Then the ratios $\frac ab$ and $\frac cd$ are equal, if and only if the products $ad$ and $bc$ are equal, formally $$\frac ab=\frac cd\quad\Longleftrightarrow\quad ad=bc.$$

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983