Proposition: Existence of Inverse Integers With Respect to Addition
For every integer \(x\in\mathbb Z\) there exists an inverse integer \(-x\in\mathbb Z\) such that the sum of both integers equals the integer zero:
\[x+(-x)=0.\]
Table of Contents
Proofs: 1
Mentioned in:
Definitions: 1
Proofs: 2 3 4
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013