Proposition: Existence of Inverse Integers With Respect to Addition

For every integer \(x\in\mathbb Z\) there exists an inverse integer \(-x\in\mathbb Z\) such that the sum of both integers equals the integer zero:

\[x+(-x)=0.\]

Proofs: 1

Definitions: 1
Proofs: 2 3 4


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013