◀ ▲ ▶Branches / Number-systems-arithmetics / Proposition: Existence of Inverse Rational Numbers With Respect to Multiplication
Proposition: Existence of Inverse Rational Numbers With Respect to Multiplication
For every \(x\in\mathbb Q\), \(x\neq 0\), there exists a number \(x^{-1}\in\mathbb Q\) with \(x\cdot x^{-1}=1\).
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1 2
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013