Proposition: Existence of Inverse Rational Numbers With Respect to Multiplication

For every \(x\in\mathbb Q\), \(x\neq 0\), there exists a number \(x^{-1}\in\mathbb Q\) with \(x\cdot x^{-1}=1\).

Proofs: 1

Proofs: 1 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013