◀ ▲ ▶Branches / Number-systems-arithmetics / Proposition: Multiplication of Rational Cauchy Sequences Is Associative
Proposition: Multiplication of Rational Cauchy Sequences Is Associative
The multiplication of rational Cauchy sequences is associative, i.e. for any rational Cauchy sequences \((x_n)_{n\in\mathbb N}\), \((y_n)_{n\in\mathbb N}\) and \((z_n)_{n\in\mathbb N}\) the following law is valid:
\[[(x_n)_{n\in\mathbb N}\cdot (y_n)_{n\in\mathbb N}]\cdot (z_n)_{n\in\mathbb N}=(x_n)_{n\in\mathbb N}\cdot [(y_n)_{n\in\mathbb N}\cdot (z_n)]_{n\in\mathbb N}.\]
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1 2
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013