Proposition: Multiplication of Rational Cauchy Sequences Is Associative

The multiplication of rational Cauchy sequences is associative, i.e. for any rational Cauchy sequences \((x_n)_{n\in\mathbb N}\), \((y_n)_{n\in\mathbb N}\) and \((z_n)_{n\in\mathbb N}\) the following law is valid:

\[[(x_n)_{n\in\mathbb N}\cdot (y_n)_{n\in\mathbb N}]\cdot (z_n)_{n\in\mathbb N}=(x_n)_{n\in\mathbb N}\cdot [(y_n)_{n\in\mathbb N}\cdot (z_n)]_{n\in\mathbb N}.\]

Proofs: 1

Proofs: 1 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013