Proposition: Product of Two Sums (Generalized Distributivity Rule)

Given two sums $\sum_{i=1}^n x_i$ and $\sum_{j=1}^m y_j$ of the elements $x_i,y_j\in R$ of a unit ring $(R,+\cdot)$, their product is given by $$\left(\sum_{i=1}^n x_i\right)\cdot \left(\sum_{j=1}^m y_i\right)=\sum_{i=1}^n\sum_{j=1}^m x_iy_j.$$

Proofs: 1

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983