(related to Corollary: Properties of the Absolute Value)
Case 1: If \(x \ge 0\), we have \(|x|=x\) and \(|-x|=-(-x)=x\). Case 2: If \(x < 0\), then \(|x|=-x\). Since \(-x > 0\), we have \(|-x|=-x.\)
Case 1: If \(x\ge 0\) and \(y\ge 0\): We have \(|x|=x\) and \(|y|=y\). Thus \(|xy|=xy=|x||y|\). Case 2: If \(x\ge 0\) and \(y < 0\): We have \(|x|=x\) and \(|y|=-y\). Thus \(|xy|=x\cdot(-y)=|x||y|\). Case 3: If \(x < 0\) and \(y \ge 0\): We have \(|x|=-x\) and \(|y|=y\). Thus \(|xy|=(-x)\cdot y=|x||y|\). Case 4: If \(x < 0\) and \(y < 0\): We have \(|x|=-x\) and \(|y|=-y\). Thus \(|xy|=(-x)\cdot(-y)=|x||y|\).
Because \(\frac xy\cdot y=x\), it follows from \((2)\) that \(\left|\frac xy\right|\cdot |y|=|x|\). Thus \(\left|\frac xy\right|=\frac{|x|}{|y|}\).