Proposition: Rational Cauchy Sequence Members Are Bounded

For any given rational Cauchy sequence \((a_n)_{n\in\mathbb N}\), the rational numbers \(a_n\) are bounded, i.e. there exists a positive constant \(c\in\mathbb Q\), such that \(|a_n|\le c\) for all \(n\in\mathbb N\).

Proofs: 1

Proofs: 1 2 3


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013