Proposition: Rational Cauchy Sequence Members Are Bounded
For any given rational Cauchy sequence \((a_n)_{n\in\mathbb N}\), the rational numbers \(a_n\) are bounded, i.e. there exists a positive constant \(c\in\mathbb Q\), such that \(a_n\le c\) for all \(n\in\mathbb N\).
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1 2 3
Thank you to the contributors under CC BYSA 4.0!
 Github:

References
Bibliography
 Kramer Jürg, von Pippich, AnnaMaria: "Von den natürlichen Zahlen zu den Quaternionen", SpringerSpektrum, 2013