◀ ▲ ▶Branches / Numbersystemsarithmetics / Proposition: Uniqueness of Inverse Rational Numbers With Respect to Multiplication
Proposition: Uniqueness of Inverse Rational Numbers With Respect to Multiplication
For every rational number \(x\neq 0\) there is only one rational number, denoted by \(x^{1}\), such that \(x\cdot x^{1}=x^{1}\cdot x=1\) for all \(x\in\mathbb Q\).
Table of Contents
Proofs: 1
Thank you to the contributors under CC BYSA 4.0!
 Github:

References
Bibliography
 Kramer Jürg, von Pippich, AnnaMaria: "Von den natürlichen Zahlen zu den Quaternionen", SpringerSpektrum, 2013