Proposition: Uniqueness of Inverse Rational Numbers With Respect to Multiplication

For every rational number \(x\neq 0\) there is only one rational number, denoted by \(x^{-1}\), such that \(x\cdot x^{-1}=x^{-1}\cdot x=1\) for all \(x\in\mathbb Q\).

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013