Proposition: Uniqueness of Negative Numbers

For every real number \(x\) there is only one real number, denoted by \(-x\), such that \(x+(-x)=(-x)+x=0\) for all \(x\in\mathbb R\).

Proofs: 1 Motivations: 1 Corollaries: 1 2 3

Proofs: 1 2 3 4 5


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983