Branches
History
Index
◀
▲
▶
Branches
/
Number-systems-arithmetics
/ Proof
Proof
(related to
Proposition: Uniqueness of Real One
)
By the
existence of real one
, we have $x=x\cdot 1$ all $x\in\mathbb R\quad ( * ).$
Suppose, \(1^{\ast}\) is any (other)
real number
, for which $x=x\cdot 1^{\ast}$ all $x\in\mathbb R\quad ( * * ).$
By $( * )$, we have $1^{\ast}=1^{\ast}\cdot 1.$
Applying the
commutativity law for multiplying real numbers
, we get $1^{\ast}=1\cdot 1^{\ast}.$
By $( * * )$ we get $1^{\ast}=1.$
Thus, the
real number one
$1$ is unique.
∎
Thank you to the contributors under
CC BY-SA 4.0
!
Github:
References
Bibliography
Forster Otto
: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983