◀ ▲ ▶Branches / Number-theory / Proposition: Floor Function and Division with Quotient and Remainder
Proposition: Floor Function and Division with Quotient and Remainder
For two integers $a,b\in\mathbb Z$ with $a > 0,$ the quotient $q$ in the division with quotient and remainder $$b=qa+r,\quad 0\le r< a$$ can be exactly determined by floor function $q=\lfloor \frac ba\rfloor$, i.e. we have $$b=\left\lfloor\frac ba\right\rfloor a+r,\quad 0\le r< a.$$
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Scheid Harald: "Zahlentheorie", Spektrum Akademischer Verlag, 2003, 3rd Edition
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927