Proposition: Floor Function and Division with Quotient and Remainder

For two integers $a,b\in\mathbb Z$ with $a > 0,$ the quotient $q$ in the division with quotient and remainder $$b=qa+r,\quad 0\le r< a$$ can be exactly determined by floor function $q=\lfloor \frac ba\rfloor$, i.e. we have $$b=\left\lfloor\frac ba\right\rfloor a+r,\quad 0\le r< a.$$

Proofs: 1

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Scheid Harald: "Zahlentheorie", Spektrum Akademischer Verlag, 2003, 3rd Edition
  2. Landau, Edmund: "Vorlesungen ├╝ber Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927