◀ ▲ ▶Branches / Number-theory / Proposition: Greatest Common Divisors Of Integers and Prime Numbers
Proposition: Greatest Common Divisors Of Integers and Prime Numbers
Let \(a\) be an integer and let \(p\) be a prime number. Then, the greatest common divisor of \(p\) and \(a\) is either \(p\) (if \(p\) divides \(a\)), or \(1\) else. Formally,
\[\gcd(p,a)=\cases{p,&\text{if }p\mid a\\1,&\text{if }p\not\mid a}\]
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927