◀ ▲ ▶Branches / Number-theory / Proposition: Legendre Symbols of Equal Residues
Proposition: Legendre Symbols of Equal Residues
Let $p > 2$ be a prime number. If two integers $n,m\in\mathbb Z$ belong to the same congruence classes modulo $p$ then their Legendre symbols modulo $p$ are equal, formally $$n(p)\equiv m(p)\Longrightarrow \left(\frac np\right)=\left(\frac {m}p\right).$$
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Solutions: 2
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927