Proposition: Legendre Symbols of Equal Residues

Let $p > 2$ be a prime number. If two integers $n,m\in\mathbb Z$ belong to the same congruence classes modulo $p$ then their Legendre symbols modulo $p$ are equal, formally $$n(p)\equiv m(p)\Longrightarrow \left(\frac np\right)=\left(\frac {m}p\right).$$

Proofs: 1

Proofs: 1
Solutions: 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Landau, Edmund: "Vorlesungen ├╝ber Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927