◀ ▲ ▶Branches / Number-theory / Proposition: Properties of Floors and Ceilings
Proposition: Properties of Floors and Ceilings
The floor and ceiling functions have the following properties:
- $\lfloor x \rfloor\le x$ and $\lceil x \rceil \ge x$ for all real numbers $x\in\mathbb R.$
- $\lfloor x \rfloor = x$ and $\lceil x \rceil = x$ if and only if $x\in\mathbb Z$ is an integer.
- If $x\not\in\mathbb Z$, then $\lceil x \rceil-\lfloor x \rfloor=1,$ otherwise $\lceil x \rceil-\lfloor x \rfloor=0.$
- For every integer $n\in\mathbb Z$, $\lfloor x+n \rfloor = \lfloor x \rfloor+n.$
- In general, $\lfloor nx\rfloor\neq n\lfloor x\rfloor.$
- Redundant floor and ceilings brackets: $(a)$ $x < n\Leftrightarrow \lfloor x\rfloor < n,$ $(b)$ $n < x\Leftrightarrow n < \lceil x\rceil,$ $(c)$ $x \le n\Leftrightarrow \lceil x\rceil\le n,$ $(d)$ $n \le x\Leftrightarrow n\le \lfloor x\rfloor.$
- Redundant floor and ceilings brackets: $(a)$ $x < n\Leftrightarrow \lfloor x\rfloor < n,$ $(b)$ $n < x\Leftrightarrow n < \lceil x\rceil,$ $(c)$ $x \le n\Leftrightarrow \lceil x\rceil\le n,$ $(d)$ $n \le x\Leftrightarrow n\le \lfloor x\rfloor.$
Table of Contents
Proofs: 1
Mentioned in:
Theorems: 1
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Graham L. Ronald, Knuth E. Donald, Patashnik Oren: "Concrete Mathematics", Addison-Wesley, 1994, 2nd Edition
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927