◀ ▲ ▶Branches / Number-theory / Lemma: Upper Bound of Harmonic Series Times Möbius Function
Lemma: Upper Bound of Harmonic Series Times Möbius Function
The infinite series built from terms of the harmonic series $\sum_{n=1}^\infty\frac{1}{n}$ multiplied by the Möbius function $\mu(n)$ has the following upper bound:
$$\left|\sum_{n=1}^\infty\frac{\mu(n)}{n}\right|\le 1.$$
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Scheid Harald: "Zahlentheorie", Spektrum Akademischer Verlag, 2003, 3rd Edition
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927