◀ ▲ ▶Branches / Set-theory / Lemma: Comparing the Elements of Strictly Ordered Sets
Lemma: Comparing the Elements of Strictly Ordered Sets
In a strictly ordered set $(V,\prec)$, for all elements \(a,b\in V\) exactly one of the following cases holds:
- Either $a \prec b$ ($a$ is smaller than $b$),
- or $a \succ b$ ($a$ is greater than $b$).
- else $a=b$ ($a$ equals $b$).
Because of these three possibilities, the strict order "$\prec$" is sometimes also called a trichotomous order.
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Reinhardt F., Soeder H.: "dtv-Atlas zur Mathematik", Deutsche Taschenbuch Verlag, 1994, 10th Edition
- Hoffmann, D.: "Forcing, Eine Einführung in die Mathematik der Unabhängigkeitsbeweise", Hoffmann, D., 2018