Proof

(related to Proposition: Distributivity Laws For Sets)

Ad "$(1)$"

$$\begin{array}{rcl} x\in A\cap (B\cup C) &\Leftrightarrow&x\in A\wedge x\in (B\cup C)\\ &\Leftrightarrow&x\in A\wedge (x\in B\vee x\in C)\\ &\Leftrightarrow&(x\in A\wedge x\in B)\vee (x\in A\wedge x\in C)\\ &\Leftrightarrow&x\in (A\cap B)\vee x\in (A\cap C)\\ &\Leftrightarrow&x\in (A\cap B)\cup (A\cap C) \end{array}$$

Ad "$(2)$"

$$\begin{array}{rcl} x\in A\cup (B\cap C) &\Leftrightarrow&x\in A\vee x\in (B\cap C)\\ &\Leftrightarrow&x\in A\vee (x\in B\wedge x\in C)\\ &\Leftrightarrow&(x\in A\vee x\in B)\wedge (x\in A\vee x\in C)\\ &\Leftrightarrow&x\in (A\cup B)\wedge x\in (A\cup C)\\ &\Leftrightarrow&x\in (A\cup B)\cap (A\cup C) \end{array}$$


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Kohar, Richard: "Basic Discrete Mathematics, Logic, Set Theory & Probability", World Scientific, 2016