◀ ▲ ▶Branches / Set-theory / Corollary: Irrational Numbers are Uncountable
Corollary: Irrational Numbers are Uncountable
(related to Proposition: Real Numbers are Uncountable)
The set $\mathbb R\setminus\mathbb Q$ of irrational numbers is uncountable.
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983