Proposition: Set-Theoretical Meaning of Ordered Tuples

Let \(X\) be a set. If for $n\ge 1,$ two $n$-tuples $(x_1,\ldots,x_n)$ and $(y_1,\ldots,y_n)$ of elements of $X$ are equal, then $x_i=y_i$ for all $i=1,\ldots,n,$ formally

$$(x_1,\ldots,x_n)=(y_1,\ldots,y_n)\Rightarrow x_1=y_1\wedge \ldots \wedge x_n=y_n.$$

Proofs: 1

Definitions: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Ebbinghaus, H.-D.: "Einführung in die Mengenlehre", BI Wisschenschaftsverlag, 1994, 3th Edition