◀ ▲ ▶Branches / Set-theory / Proposition: Set-Theoretical Meaning of Ordered Tuples
Proposition: Set-Theoretical Meaning of Ordered Tuples
Let \(X\) be a set. If for $n\ge 1,$ two $n$-tuples $(x_1,\ldots,x_n)$ and $(y_1,\ldots,y_n)$ of elements of $X$ are equal, then $x_i=y_i$ for all $i=1,\ldots,n,$ formally
$$(x_1,\ldots,x_n)=(y_1,\ldots,y_n)\Rightarrow x_1=y_1\wedge \ldots \wedge x_n=y_n.$$
Table of Contents
Proofs: 1
Mentioned in:
Definitions: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Ebbinghaus, H.-D.: "Einführung in die Mengenlehre", BI Wisschenschaftsverlag, 1994, 3th Edition