Proof: By Contradiction
(related to Proposition: Strict Orders are Extensional)
- Let $(X,\prec)$ be a strictly ordered set.
- To see this, assume that for $x,y\in X$ the following subsets are equal: $\{z\mid z\prec x\}=\{z\mid z\prec y\}\quad ( * )$.
- Further assume that the strict order "$\prec$" is not extensional.
- This means that $x\neq y.$
- Therefore, we have either $x\prec y$ or $y\prec x$.
- Therefore, we have either $x\in \{z\mid z\prec y\}$ or $y\in \{z\mid z\prec x\}$.
- This means by $( * )$ that either $x\in \{z\mid z\prec x\}$ or $y\in \{z\mid z\prec y\}$.
- This means that either $x\prec x$ or $y\prec y$ which contradicts the irreflexivity of the strict order "$\prec$".
- Therefore, $x=y$ and "$\prec$" is extensional.
∎
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Hoffmann, D.: "Forcing, Eine Einführung in die Mathematik der Unabhängigkeitsbeweise", Hoffmann, D., 2018