(related to Proposition: Calculation Rules for the Big O Notation)

Let \(g,f\), be two functions of natural numbers to real numbers and let c be a real number, formally \(g,f:\mathbb N\mapsto\mathbb R\), \(c\in\mathbb R\).

According to the definition of the big \(\mathcal O\)-Notation, we have \(f=\mathcal O(g)\) if and only if there is a positive constant \(c\in\mathbb R_+\) such that for all sufficiently large \(n\in\mathbb N\), i.e. all \(n \ge N( c )\) we have \(|f(n)|\le c|g(n)|\).

This is trivially fulfilled, since for \(c=1\) we have \(|f(n)|\le 1|f(n)|\) for all \(n\ge N(1)\).

\(\mathcal O(f)\) denotes the class of all functions \(g:\mathbb N\mapsto\mathbb R\) such that there exist constants \(b > 0\) and \(N(b)\in\mathbb N\), for which \(|g(n)|\le b\cdot|f(n)|\) for all \(n\ge N(b)\).

Thus, for a fixed \(c > 0\), \(c\cdot \mathcal O(f)\) denotes a class of all functions \(g:\mathbb N\mapsto\mathbb R\) such that there exist constants \(b > 0\) and \(N(b)\in\mathbb N\), for which \(c\cdot |g(n)|\le c\cdot b\cdot|f(n)|\) for all \(n\ge N(b)\).

In other words, \(c\cdot \mathcal O(f)\) is the class of all functions \(h(n):=c\cdot g(n)\), such that there exist the constants \(d:=c\cdot b > 0\) and \(N(d)\in \mathbb N\), for which \(|h(n)|\le d\cdot|f(n)|\) for all \(n\ge N(d)\). But this means \(c\cdot \mathcal O(f)=\mathcal O(f)\).

We have to show: If \(g=\mathcal O(f)\), then \(\mathcal O(g)=\mathcal O(f)\).

Let \(g=\mathcal O(f)\), which means that there exist constants \(b > 0\) and \(N(b)\in\mathbb N\), for which \(|g(n)|\le b\cdot|f(n)|\) for all \(n\ge N(b)\).

For any function \(h=\mathcal O(g)\), there exist constants \(c > 0\) and \(N( c )\in\mathbb N\), for which \(|h(n)|\le c\cdot|g(n)|\) for all \(n\ge N( c )\).

Combining both results, we get for the constant \(d:=c\cdot b\) that \(|h(n)|\le c\cdot|g(n)|\le c\cdot b\cdot|f(n)|=d\cdot|f(n)|\) for all \(n\ge N(d):=\max(N( c ), N(b))\). This means that \(\mathcal O(\mathcal O(f))=\mathcal O(f)\).

We have to show that if \(h_1=\mathcal O(f)\) and \(h_2=\mathcal O(g)\), then \(h_1\cdot h_2=\mathcal O(f\cdot g)\).

\(h_1=\mathcal O(f)\) means that there exist constants \(c_1 > 0\) and \(N(c_1)\in\mathbb N\), for which \(|h_1(n)|\le c_1\cdot|f(n)|\) for all \(n\ge N(c_1)\).

\(h_2=\mathcal O(g)\) means that there exist constants \(c_2 > 0\) and \(N(c_2)\in\mathbb N\), for which \(|h_2(n)|\le c_2\cdot|g(n)|\) for all \(n\ge N(c_2)\).

Combining both results, we have \(|(h_1\cdot h_2)(n)|=|h_1(n)|\cdot|h_2(n)|\le c_1|f(n)|\cdot c_2|g(n)|=c_3|(f\cdot g)(n)|\) for the constant \(c_3:=c_1\cdot c_2 > 0\) and all \(n\ge N(c_3):=max (N(c_1),N(c_2))\). This means that \(\mathcal O(f)\cdot \mathcal O(g)=\mathcal O(f\cdot g)\).

We have to show that if \(h_1=\mathcal O(f\cdot g)\), then there exist constants \(c > 0\) and \(N( c )\in\mathbb N\) such that \(h_1(n)\le |f(n)|\cdot c\cdot |g(n)|\) for all \(n\ge N( c )\).

\(h_1=\mathcal O(f\cdot g)\) means that there exist constants \(c_1 > 0\) and \(N(c_1)\in\mathbb N\), for which \(|h_1(n)|\le c_1\cdot|f(n)|\cdot |g(n)|\) for all \(n\ge N(c_1)\).

\(h_2=\mathcal |f|\cdot O(g)\) means that there exist constants \(c_2 > 0\) and \(N(c_2)\in\mathbb N\), for which \(|h_2(n)|\le |f(n)|\cdot c_2\cdot|g(n)|\) for all \(n\ge N(c_2)\).

Both conditions are the same, considering the commutativity of multiplication and setting \(c_2:=c_1\).

\(\mathcal O(f)\) denotes the class of all functions \(h_1:\mathbb N\mapsto\mathbb R\) such that there exist constants \(c_1 > 0\) and \(N(c_1)\in\mathbb N\), for which \(|h_1(n)|\le c_1\cdot|f(n)|\) for all \(n\ge N(c_1)\).

Correspondingly, \(\mathcal O(g)\) denotes the class of all functions \(h_2:\mathbb N\mapsto\mathbb R\) such that there exist constants \(c_2 > 0\) and \(N(c_2)\in\mathbb N\), for which \(|h_2(n)|\le c_2\cdot|f(n)|\) for all \(n\ge N(c_2)\).

If \(f(n)\le g(n)\) for all \(n\in\mathbb N\), then \(|h_2(n)|\le c_2\cdot|f(n)|\le c_2\cdot|g(n)|\) for all \(n\ge N(c_2)\). This means that \(|f|\le |g|\Rightarrow\mathcal O(f)= \mathcal O(g)\).

∎

**Erk, Katrin; Priese, Lutz**: "Theoretische Informatik", Springer Verlag, 2000, 2nd Edition