Proof
(related to Corollary: Reduction of $\epsilon$-NFA to DFA)
- First, reduce a given $\epsilon$-NFA to an NFA according to theorem about the reduction of epsilon-nfa to nfa.
- Now, reduce the resulting NFA to a DFA according to the Rabin-Scott theorem.
- This shows the set inclusion $\mathcal L(\epsilon-\operatorname{NFA})\subseteq\mathcal L(\operatorname{DFA}).$
- The other set inclusion $\mathcal L(\operatorname{DFA})\subseteq\mathcal L(\epsilon-\operatorname{NFA})$ is trivial.
∎
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Erk, Katrin; Priese, Lutz: "Theoretische Informatik", Springer Verlag, 2000, 2nd Edition
- Hoffmann, Dirk: "Theoretische Informatik, 3. Auflage", Hanser, 2015