Definition: Diameter In Metric Spaces

Let \(A\) be a subset of a metric space $(X,d)$. The diameter $\operatorname{diam} (A)$ is defined as the supremum of all distances of any two points \(x,y\in A\), formally \[\operatorname{diam} (A):=\sup\{d(x,y):~x,y\in A\}.\]

Proofs: 1 2 3
Theorems: 4


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 2, Differentialrechnung im \(\mathbb R^n\), Gewöhnliche Differentialgleichungen", Vieweg Studium, 1984