Proposition: Distance in Normed Vector Spaces

Let \((V,\|~\|)\) be a normed vector space. Then \[d(x,y):=\|x-y\|,~~~~~~~(x,y\in V)\] defines a distance on \(V\)1.

Proofs: 1

Definitions: 1
Proofs: 2 3


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 2, Differentialrechnung im \(\mathbb R^n\), Gewöhnliche Differentialgleichungen", Vieweg Studium, 1984

Footnotes


  1. We also may use the notation \(\|x,y\|\) instead of \(\|x-y\|\), since \(\|x-y\|=\|y-x\|\) and it does not matter if we express the distance as \(\|x-y\|\) or \(\|y-x\|\).