◀ ▲ ▶Branches / Topology / Proposition: Modulus of Continuity is Subadditive
Proposition: Modulus of Continuity is Subadditive
Let \((X,d_x)\) and \((Y,d_y)\) be metric spaces and let \(f:X\to Y\) be a continuous function on $X$.
The modulus of continuity $\omega_f$ is subadditive, i.e. for all real numbers $\delta\ge 0$, $\delta'\ge 0$, we have $\omega_f(\delta + \delta')\le \omega_f(\delta )+\omega_f(\delta').$
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983